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As compared with the existing techniques for calibra-
tion of bolometer mounts, the methods proposed herein
may appear unduly complex, at least in terms of operator
effort. On the other hand, it must be recognized that the
coupler-mount assembly is a two-port device, and to the
author, at least, this increase in complexity appears un-
avoidable.
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Three-Dimensional Transmission-Line Matrix Computer
Analysis of Microstrip Resonators

SINA AKHTARZAD axp PETER B. JOHNS

- Abstract—A wide range of microwave resonators are analyzed
using the same three-dimensional transmission-line-matrix (TLM)
computer program. The paper demonstrates the ease of application,
versatility, and accuracy of the TLM method. The results presented
include the dispersion characteristics of microstrip on dielectric and
magnetic substrates and an example of a microstrip discontinuity.
The surface-mode phenomenon of microstrip is also investigated.

I. INTRODUCTION

HE SOLUTION of large microwave integrated cireuit
(MIC) subassemblies presents a major problem to any
numerical method. However, it would seem that the first
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step should involve a numerical routine of a very general
nature for simple discontinuities in three-dimensional
structures. There are many articles giving design data for
single microstrip ([1}-[57], for example), pairs of coupled
strips ([61-[9], for example), and coplanar waveguides
([107 and [117). Discontinuities which can occur in simple
configurations such as abruptly ended strip conductor
[127-[14] and strip-width variation [127] have also been
reported. Some of these publications use methods based
on static approximations and all of them tend to use fairly
specialized techniques and programs. Thus the design
engineer does not have a universal and general program
for solving a wide range of problems. The transmission-
line matrix (TLM) [157], [16] method of numerical analy-
sis in the form of a very general and short program fulfills
this requirement.

The purpose of this paper is twofold: firstly, to review
the general state of the art of the TLM method as far as
the modeling of three-dimensional cavities is concerned;
Secondly, to demonstrate the accuracy and the versatility
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of this method in the form of a computer program by
means of a few typical microstrip cavity examples. It
should be noted that all the examples presented in this
paper have been analyzed strictly in three dimensions
using various lengths of cavity to obtain the dispersion
curves.

II. A BRIEF OUTLINE OF THE TLM METHOD

The TLM numerical method in two dimensions [17]
has been extensively explored in various papers where it
has been used to solve general two-dimensional loss-free
[18] and lossy inhomogeneous [15] field problems. In
two dimensions the method is based on a network of shunt
nodes connected together to represent a propagating space.
However, the method has now been extended to use shunt
nodes [Fig. 1(a)] in conjunction with series nodes [15]
[Fig. 1(b)] to represent a true three-dimensional [15]
space so that each three-dimensional node consists of
three shunt and three series nodes. The three shunt nodes
represent the E-field, and the three series nodes represent
the H-field in the three coordinate directions as shown in
Fig. 1(¢) (note that in Fig. 1(¢) single lines are used to
represent a pair of lines). To accommodate discontinuities
such as metallic boundaries and slabs of dielectric or
magnetic material, open-circuited and short-circuited
lengths of lines (stubs) of variable, normalized charac-
teristic admittance Yy and Z, are added to shunt and
series nodes, respectively. By varying the values of Y,
and Z,, the values of permittivity (e.) and permeability
(ur), respectively, at the node, can be fixed to any desired
value. The three-dimensional node is further equipped
with stubs of infinite length and normalized characteristic
admittance G, at the shunt nodes to facilitate any di-
electric losses which may be required. The three-dimen-
sional geometry of a problem is set up by connecting many
such three-dimensional nodes together.

Let us now examine the three-dimensional node of Fig.
1(e) more closely. In [157 it is shown that if the voltage
(v) between the lines represents the E-field, and the current
(I) in the lines represents the H-field, then the field
equations satisfied by a three-dimensional node corre-
spond to the set of Maxwell’s equations as follows:

oH, o, EYsA

" eoe,af + oE, (1)
ai’m _ Ga_liz - _ﬂoﬂr"a_lfv (5)
‘Z—il’ — ajj’ = —#omaa—}f- 6)
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open circuit
infinite length

(a)
3

Yy
1436
.z

x
[_, z
4
%
5
1
short circuit

(b)

shunt node

sertes node

short crcuited stub (permeability- stub)
open circuited stub (permittivity - stub)
infinitely long stub (loss-stub)
©
Fig. 1. (a) Shunt-connected node with permittivity und loss stubs.
) Series-connected node with permeability stub. (c) Schematic
diagram of a three-dimensional node including the permittivity,
permeability, and loss stubs (two-dimensional node separation
and stub length = Al/2). Note that the dotted lines making up

the corners of the cube are guide lines and do not represent trans-
mission lines or stubs.

In these equations, the following equivalences apply:
E, = the common voltage at shunt node E,

E, = the common voltage at shunt node E,

E, = the common voltage at shunt node E.
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H, = the common current at series node H,
H, = the common current at series node H,
H, = the common current at series node H,
e = C (the capacitance per unit length of lines)
€& = 2(1 + Y0/4)
po = L (the inductance per unit length of lines)
My = 2(1 + Z0/4)

o = Go/ ((L/C)12- Al) N

where Al/2 is the spacing between the individual two-
dimensional elementary nodes.

Therefore, it can be seen that the six components of
the electromagnetic (EM) field at a three-dimensional
node are readily available at the corners of the three-
dimensional node cube and are analogous to common
voltages or common currents at the shunt or series nodes.
Furthermore, 1t is noticed that permeability (p,), or per-
mittivity (e) and conduectivity (o) of part of the space
represented by the three-dimensional node may be made
variable simply by adjusting the normalized characteristic
values of stubs Z,, Y, and G,, respectively. The three-
dimensional node represents a cube volume of space of
Al/2 long in each direction. Interconnection of many such
three-dimensional nodes makes it possible to deseribe any
complicated inhomogeneous media. The TLM method is
then concerned with obtaining the impulse response of
such network representing the media. The numerical
routine is therefore based upon the voltage impulse scat-
tering matrix of the individual two-dimensional nodes
forming the three-dimensional node. The voltage scattering
matrix for the shunt node [15] is

1 111 Y]
1 11 1Y
2— 11117 g 8
% 0 (8)
1 1 1 1 Y,
|1 1 1 1 Y]
where
Y = 4 _‘— Yo —l— Gm (Q)

Similarly, the. voltage scattering matrix for the series
node [15] is given by

[ —1 1 1 -1 =17
1 -1 -1 1 1
2
=11 -1 -1 1 1 |4+9 (@10
VA
—1 1 1 -1 -1
u..'—Zﬁ ZO ZO _‘Zo —Zo_
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where

Z =4+ Z. (11)

In these equations 4 is the unit matrix.

Conducting boundaries and strips of a problem are
simulated in the model by means of short-circuiting the
individual shunt nodes in the plane of the boundary or
strip. The boundaries may be made lossy by using im-
perfect reflection coefficients [19]. Open-circuit planes of
symmetry may be utilized to make use of the onefold,
twofold, or threefold symmetry of a particular structure.
This would, of course, lower both memory stores and
run-time requirements of a program considerably. An
open-cireuit plane may be simulated by means of open-
circuiting the individual series nodes lying on the plane.

For the purpose of the analysis, any of the six EM
field components is excited by introducing impulses at
various points in the network model. The initial sign and
amplitude of a field component can be fixed using appro-
priate initial impulse values. These impulses travel along
the ideal TEM lines and are scattered at the individual
two-dimensional nodes according to (8)—(11). In this way,
the time-domain propagation of all six KM field components
is obtained simultaneously. A solution for any (or all) of
the field components is available anywhere within the
geometry of the problem. The output consists of a stream
of impulse amplitudes corresponding to the output impulse
function for the particular field component under con-
sideration. Finally, the Fourier transform of this function
is taken to yield the response to an excitation varying
sinusoidally with time.

A general-purpose computer program based on the pre-
ceding analysis has been written. This program is highly
versatile and all the information relating to a three-
dimensional resonator, such as conducting boundaries,
strip patterns, permeability, and permittivity at different
points and also losses, is simply fed into the computer as
data. The three-dimensional program is an extension of
the two-dimensional TLM program [20] and has been
written in only 110 lines of Fortran including three short
subroutine programs. This program is used to obtain re-
sults for all the following examples in this paper. These
specific examples have been chosen for the sole purpose
of comparison with other results available.

III. MICROSTRIP CAVITIES

The general TLM program has been used to find the
resonant frequencies of three-dimensional cavities contain-
ing microstrip. The first microstrip cavity checked on the
computer corresponded to the structure of Fig. 2. In the
TLM method the resonant frequencies of cavities with
various lengths (L) are used to plot frequency in gigahertz
versus phase constant (8) curve. The TLM result is com-
pared with Mittra and Itoh [3]and Hornsby and Gopinath
[47 in Fig. 2. The quasi-TEM solution for open micro-
strip line based on Wheeler’s curves [17] is also shown for
comparison. The frequency versus phase constant curve
for the quasi-TEM analysis shows no dispersion. This is
due to the fact that the dispersion effect is neglected in
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‘such an analysis. The curves of Fig. 2 demonstrate the
high accuracy of the results obtained by this method, even
though a very small number of nodes (see the figure) have
been used to describe the geometry of the problem.

Longitudinal field components effect a phase velocity
decrease with inereasing frequency. 8 = 8/80 = esi/? de-
seribes the frequency-dependent behavior of effective per-
mittivity. Fig. 3 shows the frequency dependence of e
for a microstrip cavity shown in the same figure. In Fig.
3, the effective permittivity versus frequency curve ob-
tained by the TLM method for various lengths of cavity
(1) is eompared with that given by Itoh and Mittra [21].
A full description of the method used in [21] is given in
[13]. Note that the method used in [13] by the author,
Itoh, differs from that given in [3] by Mittra and Itoh.

Iv. MICROSTRIP LINE ON MAGNETIC
SUBSTRATE

The method is used to calculate the dispersion relation-
ship for a microstrip line on an isotropic magnetic sub-
strate. The example is given for a relative permeability
of u, = 0.8 which is within a practical range of permeabili-
ties for substrates biased along the direction of propaga-
tion [227]. The results are shown in Fig. 4 and are compared
with the result obtained by Pucel and Massé [227] assum-
ing TEM propagation. As expected, the results agree for
low frequencies, and the discrepancy between the TEM
assumption and the true dispersive result obtained by
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the TLM method becomes important only at high fre-
quencies.

Pucel and Massé have derived a duality relationship
between magnetic and dielectric substrates, again assum-
ing TEM propagation. This relationship allows calculation
of the effective permeability p.e: in terms of effective
permittivity e by the formula [227]

1
it (W/Hpu™)

In [28], using the TLM method, it is shown how the
product pets- et varies with frequency for substrates with
ur =08 (e =1) and ¢ = 1.25 (g, = 1). The results
show that at low {requencies the TEM approximation
applies since the product is near unity. At high frequen-
cies pess tends to unity and the product then asymptotes
to €. The near-linear variation of e with frequency
suggests that the approximate method for calculating pess
used by Pucel and Massé [24] yields good results.

In Fig. 4 the dispersion curve obtained by this method
for the first waveguide mode of the same structure is also
shown. It must be noted that since the TLM method
operates in the time domain, the output impulse function
also contains the information about the bigher order
modes. Therefore in Fig. 4, each pair of resonant frequen-
cies corresponding to the same 8 (or L) have been ob-
tained in one run of the program.

V. MICROSTRIP DISCONTINUITIES

The versatility of both the TLM method and the TLM
program is further illustrated here by calculating the reso-
nant frequencies of cavities containing microstrip with
an abrupt change in width.

ot (W/H ) =
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Fig. 5 shows the geometry of a dielectric-loaded cavity
with a microstrip line. The width of the center line is
nonuniform with an abrupt change. Some representative
numerical results of this geometry are shown in Fig. 6.
The TLM results are compared with a curve calculated
by TEM analysis with a capacitive discontinuity given
by Farrar and Adams [12]. Farrar and Adams obtain
their results using a matrix method which is based on the
quasi-static approximation. From Fig. 6 it is apparent
that the relative values of frequency for short lengths
(2L) of the cavity-are considerably lower than those
computed by the quasi-static approximations. This is
partly due to the lack of dispersion in the continuous
sections when employing TEM analysis. The discrepancy
is due to the fact that there is a fringing field effect be-
tween the discontinuity edges and the front conducting
plane of the cavity (Fig. 5) in the TLM results. For a
short length of L in Fig. 5, the fringing capacitance will
have an effect comparable with that of the discontinuity
and hence the larger differences at this region.

The dispersive curve for a uniform line with W = W, =

|‘—?Wo-! .
N> \’/

U ——

frat T e
£
©
<

Fig. 5. Microstrip cavity with an abrupt change in linewidth.
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1.75 mm is also shown in Fig. 6. This shows that the dis-
persion due to the line itself is far more important than
the dispersion due to the discontinuity. Hence a solution
based on the quasi-TEM analysis of the complete struc-
ture would be misleading.

VI. INVESTIGATION OF THE LOW-LOSS
MICROSTRIP MODE

It is well known that the dominant mode of propaga-
tion in the inhomogeneous structures is basically the
quasi-TEM mode with a de cutoff frequency. However,
in [5], using the finite-element method of numerical analy-
sis [257], Daly has predicted the existence of a second
type of mode also with a de cutoff frequency. The particu-
lar mode has been referred to as surface wave due to the
heavy concentration of all field components near the air—
dielectric interface. The longitudinal fields for this mode
decay rapidly away from the interface as in surface wave-
guides [267], [27]. Daly argues that due to the smallness
of the electric field at the conduector, for a given surface
resistivity, the losses in the surface wave would be very
much smaller than for the quasi-TEM waves. The same
general argument would also hold if the dielectric were
lossy. The dispersion in the proposed surface mode was
also predicted to be negligible compared to that tor the
TEM mode.

These desirable properties highlight the importance of
investigating the existence and properties of this mode
and an attempt has been made to do this using the TLM
method. Thus the structure of the example used by Daly
was reproduced in the computer in order to compare his
results with the TLM results. The geometry of the strue-
ture is shown in Fig. 7. For the purpose of representation,
in Fig. 7 results are compared for frequency versus phase

AR FILLED Waveguide mode

70k DALY'S SURFACE
MODE

GUASI-TEM MODE
L (rm)=
125
IELECTRIC
"/ FILLED

O This method (TLM} /
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o [ fm R
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Fig. 7. Dispersion diagram of enclosed microstrip line (a/Al = 8).
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constant rather than frequency versus effective permittiv-
ity [5]. Considerable care was taken to try to excite the
surface mode as suggested by Daly, and the cavity was
even excited with Daly’s field values as given in [5].
However, there was no resonant frequeney corresponding
to this mode, even though higher order waveguide modes
are readily detected. (Note that in [157], the same micro-
strip structure, but without the strip, was used to obtain
accurate surface-waveguide-mode results.)

Figs. 8 and 9 show a typical F,-field amplitude versus
normalized frequency Al/X for the cavity of Fig. 7, with
L = 3.75 mm. (Note that the effect of truncating the
iteration process is to cause the field values, expressed as
a function of frequency, to be convolved with a sin f/f-
type curve as shown in these figures. This causes smooth-
ing of high narrow peaks of the output function.) Fig. 8
clearly shows the resonant peaks corresponding to the
quasi-TEM, the first, and the second higher order wave-
guide modes. Any resonant frequency corresponding to
the surface mode would have appeared between the quasi-
TEM and the first waveguide mode resonant frequencies
(see Fig. 7). Fig. 9 shows a version of this region for 2000
iterations, but there is still no sign of a resonance corre-
sponding to the surface or low-loss mode. Therefore we
conclude that such a mode most probably does not exist.
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VII. SIX-COMPONENT EM FIELD
DISTRIBUTIONS

With a slight modification to the general TLM pro-
gram, values of the six components of EM fields at any
frequency are readily available at all the nodes inside a
cavity. This is considered to be important not only for
the value of seeing the field distribution, but also for the
following reason. In [287], the authors have shown the
results for the power decay times of a number of partially
filled lossy dielectric cavities. However, in all cases the
initial field excitation consisted of equal amplitudes of £,
at each of the nodes and hence the decay tinme was not to
be associated with any one particular mode. But using
the field distribution information, it is proposed that the
decay time for a particular mode may be found. This will
be the topic of a subsequent investigation.

Figs. 10-12 show the distribution of the six electric and
magnetic field components across various planes of micro-
strip cavity in Fig. 7. (Note that the numerical values
given in Figs. 10-12 apply at the three-dimensional node
cube corners as projected onto the zy plane.) The field
values are for a frequency of 35.59 GHz corresponding to
the dominant mode (quasi-THEM) frequency resonance of
this cavity with L = 2.25 mm. Cross sections in the z-
coordinate direction have been chosen at various dis-
tances z = [ from the front s/c plane of the cavity so that
the particular field components in that plane will exhibit
maximum values. The general characteristics of the fields
are much as would be expected, i.e., the fields are mostly

'
ey

o

o

'
S5—
e

|

o —]
w

[

3, —
w

|

W e
hed

!
3 1 2z.+ 45 ~}——68 72 —1—136 —{—so—
08 1M 18 -123 o113 63 25 7
i- 5 —i—19+ 43 4{— 50 + 162-}— 160-—*— |3e—|—120 .
M8 26 U2 0 185 -B1 -2 11
}- /.—-‘»16 13 116-]-—344 ~|»234+:>12-+173_
427 136 169 -243 42 4 73 50
Il !’ } I I 842 +z.z.4 —}—272 4—204—
83, 832 83 80 936 399 1% 83
6 —‘r21 —-}-53 ——-f—m. —1—372—+—313 Ai—:'ag +199 .
823 817 800 768 698 458 270 124

808 799 770 713 617 458 295 143
|>'5 +16+32 +56 —{—-85 N -—I——BL 78 —
799 789 754 688 588 453 302 149
! | | | ! l

Fig. 10. Transverse electric field distribution in the z-y plane and
z = | for the dominant microstrip mode of Fig. 7 structure at
35.59 GHz (L = 2.25,] = 1.0 mm); horizontal number E,, verti-
cal number E,.



996

'
'
[T a——
@

1

-
w__J
©

|

~

'

-

5 —
]

'

N

ul

1
0'1__
W

1

N
S—

1l
N
Q
©

i
N
N
N}

1

N
w
N

1
N
~
\

-

]

w

1}
5}
w

L
~

|
N
jat
@
'
N
@
et
1
w
X
©
'
w
e
®
'
N}
o
|
>
R
|
(=]

TR T
Tef
T
Fit
1a
+it
it
! |

{

'
N

-

o

o)

=

)

— ot
>

'

w

«

3

'

~
—g—
el

'

~3

O -
o

o
N
N
a_|
3
>
=3
N
3
&
~3
g
o2}
[}
©
N
-
3

al'”_b‘é_]—
+
+
it
1

|

-
w

T
T
T
+
+
1

]

wn

2
S
a2
N
=
o
o)
o
a
=]

<]
N
(]
3
-
o
D

1513 1491 142 1303 1115 8s6 572 28
l | | | | | | {
Fig. 11. Transverse magnetic field distribution in the z—y plane

and z = [ for the dominant microstrip mode of Fig. 7 structure at
35.59 GHz (L = 2.25 mm, ! = 0.25 mm); vertical number H.,,
horizontal number H,.

E ,
|
|

il 120 168 209 238 254 261

(24

-0.05——=0.06—0.07—0.19 —0.38 — 0 63— 0.7%— (.51 ——
’ 2 | 76 | 13 168 t 20 ‘ 2 285 |289

-0.07— 0.06—0 12— 033 —0. % —1.{2— 189 135 |

27 84

150 228 i 34

34 8 l 347

-0.05 0.04— 0.10 — 0. 31— 0.87 — 2.52 — 4.21 — 3.1 ——

| 29 I 91 |1sg | 281 I 470 sz 448 433
3.

9—9.68 —7.18 —
40 118 193

274 | 37 | 40 l w21 ‘ 424
0.09 =—0.01 ——0.15 — 0.57 —r 1 15— 2. 85 e b 523 30—
| 39 115 |187 l 258 I 26 l 370 ‘ 3% I 107
0.17 — 029——0.47——0,59—0. 76 ——1.50—=2 . 11 == 1,56 s
‘ 37 m I 180 I 245 | 302 l 346 . 377 ‘ 393
0.y 0.50— 0. 57——0. 26 ~— 0. 3—r0.55——0. 77— G. 62—
1 3 l 109 } 177 I 239 l 202 ] 336 J 370 | 387

i

Fig. 12. Longitudinal electric and magnetic field distributions in
the z—y planes with z = [; and 2z = I,, respectively, for the domi-
nant microstrip mode of Fig. 7 structure at 35.59 GHz (L =
2.25 mm, I, = 0.25 mm, /; = 1.0 mm); decimal number —E,,
integer number H .
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concentrated in the dielectric, and the normal electric
fields and tangential magnetic fields at or near the strip
and the surrounding conductors reach a maximum.

VIII. CONCLUSIONS

‘This paper has demonstrated the application of the
TLM method of numerical analysis to three-dimensional
microstrip cavities. The main advantages of the TLM
method are its ease of application, its versatility and ac-
curacy. /

The ease of application arises because of the close con-
nection between the numerical routine and the actual
physics of wave propagation [29]. For example, provided
the capacitance of the lines in the TLM method are in-
creased somehow (by using stubs in this paper) then,
because all six components of the field are properly ac-
counted for, the dielectric boundary will also be properly
accounted for. Thus there is no need to introduce special
numerical routines to take account of the boundary. The
same argument applies to lossy materials (from zero con-
ductivity to infinite conductivity) and hence for metallic
boundaries also.

The versatility arises for similar reasons. The proper-
ties of a medium are described at each node by the two
stubs, the permittivity and permeability stubs at shunt
and series nodes, and the loss stub at shunt nodes. The
TLM program consists, therefore, of setting the properties
of the medium at each node in the first instance, and then
performing the iteration process to find the way in which
the fields propagate. Thus the complication of the geome-
try in terms of ¢, u, and o is limited only to the mesh
coarseness, and does not affect the program listing.

The accuracy of the method is due to the sophistication
of the internodal field function which is (almost unwit-
tingly) used when the Fourier transform is taken. In
effect, the act of taking the Fourier transform puts a
section of a sinusoidal function between each node. For
example, in a homogeneous rectangular cavity the field
functions are not solved approximately, but exactly [30].
It is for this reason that field deseription errors in the
TLM method tend to be less than for many other methods.

However, it would be impractical to have an easily ap-
plied, versatile and accurate method if the computer run-
ning time and storage were unreasonable. While it is not
possible to present formulas for the general case at this
stage, it is hoped that the following figures demonstrate
that the running time and storage of the TLM method
are at least comparable with other methods. The first
case 1s for the geometry of Fig. 2 for L = 2.5 mm using
5 X 9 X 6 = 270 nodes (no symmetry properties used)
and 200 iterations of the matrix. In this problem the
running time was 2.16 min and the total storage was
20K words. The second example is for Fig. 5 for 2L = 5.0
cm using 8 X 8 X 11 = 704 nodes (symmetry property
used) and 400 iterations. Here the time was 11.26 min
using 46K words. The results are quoted for the ICL
1906 A computer. ’
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